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Synthetic Theory of Superconnections
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In our preceding two papers we have developed synthetic differential
supergeometry up to the basic theory of differential forms. In this paper we give
the notion of connection, as well as its accompanying notions of connection form
and curvature form, superized in our synthetic context, and establish the second
Bianchi identity synthetically.

INTRODUCTION

The theory of elementary particles has been getting more and more
geometric. The intimate relations between Yang–Mills theories in physics
and the theory of connections in mathematics are widely known in both the
mathematics and physics communities. The differential geometric foundations
of gauge theories are firmly established.

Each elementary particle has to abide by one of the two kinds of statistics,
namely, Bose–Einstein statistics or Fermi–Dirac statistics. Particles subject
to the former statistics are called bosons, while those subject to the latter
statistics are called fermions. Supergeometry has enabled mathematical physi-
cists to deal with both kinds of elementary particles on an equal footing,
providing the theory of connections with a super flavor.

Synthetic differential geometry is a vanguard of modern differential
geometry, in which infinitesimals are abundantly and coherently available.
To synthetic differential geometers the word “infinitesimal” is no longer a
jaw breaker, but a magic wand. In spite of many mathematicians’ studied
indifference to infinitesimals per se, synthetic differential geometers are well
aware that microlinear spaces, which are spaces infinitesimally indistinguish-
able from Euclidean spaces, are to replace smooth manifolds, just as Riemann
integrals have been replaced completely by Lebesgue integrals. In the mathe-
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matics of our age, Riemann integrals are only a halfway house in memory
of Riemann, one of the greatest mathematicians of the 19th century. It is
doubtful that, without the glory of his name, they would have survived to
the concluding decade of the 20th century.

The exact formulation of supergeometry, in particular, the exact formula-
tion of supermanifold, is not as easy as was first thought. Our main platform
is that the superization of microlinear space gives the right direction to
follow in supergeometry. We have already developed synthetic differential
supergeometry up to the basic theory of differential forms (Nishimura (1998,
1999). The principal objective of this paper is to develop the synthetic theory
of superconnection. The succeeding section is devoted to somewhat lengthy
preliminaries. In Section 2 we superize the notion of connection in our
synthetic context, and discuss superconnection form (gauge potential) and
covariant exterior differentiation. In Section 4 we introduce two kinds of
curvature form (gauge field) and compare them. Only one of them is to
satisfy the so-called second Bianchi identity. Superconnection forms and
curvature forms of induced superconnections are discussed in Section 3 and
the concluding part of Section 4.

As is usual in synthetic differential geometry, the reader should presume
throughout the paper that we are working in a (not necessarily Boolean)
topos, so that the excluded middle and Zorn’s lemma have to be avoided.
Objects of the topos go under such aliases as a “space,” a “set,” etc.

1. PRELIMINARIES

1.1. Basic Superalgebra

Let Z denote the set of integers, whose elements are usually written i,
j, k, . . . , with or without subscripts. Let Z2 denote the set of integers mod
2, whose elements are usually written p, q, r, . . . , with or without subscripts.
We usually denote 0 mod 2 by 0 and 1 mod 2 by 1, though integers are
sometimes regarded as elements of Z2. For any p P Z2, (21)p denotes 1 or
21 as p 5 0 or p 5 1. Both Z and Z2 are commutative rings in standard
sense. A superring is a Z2-graded ring. Given a superring 6, we will often
write 60 or 6e for its even part and 61 or 6o for its odd part. We say that
6 is graded commutative if for any a P 6p and any b P 6q we have

(1.1) ab 5 (21)pqba.

Now we choose, once and for all, a graded commutative superring R
intended to play the role of real numbers in our supermathematics. So we
have the following axiom:

(1.2) R is a graded commutative superring.
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A left R-supermodule is a left R-module } whose underlying Abelian
group is decomposed into even and odd parts }e and }o (also written }0

and }1), respectively, such that

(1.3) If a P Rp and u P }q, then au P }p1q.

The notion of a right R-supermodule is defined similarly. It is a truism that
R can canonically be regarded as both left- and right R-supermodules. It is
well known that every left R-supermodule } can be regarded as a right R-
supermodule in the sense that for any a P Rp and any u P }q, we have

(1.4) ua 5 (21)pqau.

By the same token, every right R-supermodule can be regarded as a left R-
supermodule, so that we can feel free to use the term “R-supermodule”
without an adjective “left” or “right.” In addition, any R-supermodule } is
an R-bimodule in the sense that for any u P } and any a, b P R we have

(1.5) (au)b 5 a(ub).

Each element u of an R-supermodule } is decomposed uniquely into its
even and odd parts ue and uo, so that u 5 ue 1 uo with ue P }e and uo P
}o. If u is even or odd, then it is called pure, in which .u. is defined to be
0 or 1 according as u P }e or u P }o.

Given R-supermodules } and 1, an R-homomorphism w from the right
R-module } to the right R-module 1 is called even or odd according as,
for any p P Z2 and any u P }p, we have

(1.6) f(u) P 1p, or
(1.7) f(u) P 1p11.

The additive group of even or odd R-homomorphisms from } to 1 is denoted
by Home(}, 1) or Homo(}, 1) [also written Hom0(}, 1) or Hom1(}, 1)].
We write Hom(}, 1) for their direct sum Home(}, 1) % Homo(}, 1),
which can be considered as an R-supermodule in the sense that for any a P
R, any u P }, and any f P Hom(}, 1) we have

(1.8) (af )(u) 5 af (u).

An R-superalgebra is an R-algebra ! which is a superring and an R-
supermodule with respect to the same Z2-grading such that for any u, v P
! and any a, b P R we have

(1.9) (au)(vb) 5 a(uv)b.

An example of an R-superalgebra is the totality of R-valued functions on a
set with componentwise operations, in which its even and odd elements are
Re-valued and Ro-valued ones. A homomorphism of R-superalgebras is a
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homomorphism of their underlying R-algebras preserving Z2-gradings. Given
two R-superalgebras ! and @, we will often write Spec@! for the set of
homomorphisms of R-superalgebras from ! to @.

The polynomial R-superalgebra R[X1, . . . , Xn] of variables X1, . . . , Xn

with each of the variables being named as either even or odd is the graded
commutative R-superalgebra freely generated by X1, . . . , Xn over R. It is
characterized by the following universal property (Manin, 1988, Chapter 3,
§2, Item 5).

Proposition 1.1. For any graded commutative R-superalgebra ! and
any pure elements a1, . . . , an of ! with .ai., 5 .Xi. (1 # i # n), there exists
a unique homomorphism w of R-superalgebras from R[X1, . . . , Xn] to !
such that w(Xi) 5 ai (1 # i # n).

An ideal ( of an R-superalgebra ! is called a superideal of ! if both
the even and odd parts of each element of ( belong to (.

1.2. Weil Superalgebras and Supermicrolinearity

A Weil superalgebra is a graded commutative R-superalgebra W which,
regarded as an R-module, is to be written as W 5 R % m with the first
component being the R-superalgebra structure and the second being a finite-
dimensional nilpotent superideal (called the superideal of augmentation). By
way of example, the quotient superalgebra of the polynomial superalgebra
R[X1, . . . , Xn] with respect to the superideal generated by {Xi Xj .1 # i #
n} is a Weil superalgebra and is denoted by W(p1, . . . , pn) with pi 5 .Xi.
(1 # i # n). Given Weil superalgebras W1 and W2 with their superideals of
augmentation m1 and m2, respectively, a homomorphism of R-superalgebras
w: W1 → W2 is said to be a homomorphism of Weil superalgebras if it
preserves their superideals of augmentation, i.e., if w(m1) , m2. A finite
limit diagram of R-superalgebras is said to be a good finite limit diagram of
Weil superalgebras if every object occurring in the diagram is a Weil superal-
gebra and every morphism occurring in the diagram is a homomorphism of
Weil superalgebras. The diagram obtained from a good finite limit diagram
of Weil superalgebras by taking SpecR is called a quasi-colimit diagram of
supersmall objects.

The super version of the general Kock axiom, called the general super-
Kock axiom, goes as follows:

(1.10) For any Weil superalgebra W, the canonical R-superalgebra
homomorphism W → RSpecR(W) is an isomorphism.

Spaces of the form SpecR(W) for some Weil superalgebras W are called
superinfinitesimal spaces or supersmall objects. The superinfinitesimal space
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corresponding to the Weil superalgebra W(p1, . . . , pn) is denoted by
D(p1, . . . , pn). In particular, D(?), D(0), and D(1) are denoted also by 1, D,
and D, respectively. As an example, by Proposition 1.1, D, D, and D(0, 1)
are to be identified with {d P Re.d 2 5 0}. {d P Ro.d 2 5 0}, and {(d1, d2)
P Re 3 Ro.d 2

1 5 d 2
2 5 d1d2}, respectively. It is easy but interesting to see

that D 5 Ro, from which and the general super-Kock axiom it follows that
every function from Ro to R is linear (Dewitt, 1984, Exercise 1.1). Given
p P Z2, Dp denotes D or D according as p is 0 or 1.

The superinfinitesimal space D(0, 1) plays a very important role in our
discussion of tangency. First we note that D(0, 1) can be identified with the
subset of R consisting of all d P R such that d2

e 5 d2
o 5 dedo 5 0. Under

this identification (d1, d2) P D(0, 1) corresponds to d1 1 d2 P R. What
concerns us most about D(0, 1) is that the space D(0, 1), regarded as a subset
of R, is closed under the left and right actions of R on itself, while D and
D are not. More specifically, given a P R and (d1, d2) P D(0, 1), a(d1, d2)
and (d1, d2) a go as follows:

(1.11) a(d1, d2) 5 aed1 1 aod2, aod1 1 aed2)
(1.12) (d1, d2)a 5 (d1ae 1 d2ao, d1ao 1 d2ae)

Just as the general Kock axiom paved the way for the introduction of
microlinear spaces, its super version invokes the notion of a supermicrolinear
space, which is by definition a space M abiding by the following condition:

(1.13) For any good finite limit diagram of Weil superalgebras with
its limit W, the diagram obtained by taking SpecR and then
exponentiating over M is a limit diagram with its limit
MSpecRW.

The following proposition guarantees that we have plenty of supermicro-
linear spaces.

Proposition 1.2. (1) Re and Ro be supermicrolinear spaces.
(2) The class of supermicrolinear spaces is closed under limits and

exponentiation by an arbitrary space.

1.3. Differential Calculus

The super version of the Kock-Lawvere axiom, which is subsumed
under the super version of the general Kock axiom discussed in the previous
subsection, goes as follows:

(1.14) For any function f : D → R, there exists a unique b P R such
that f (d ) 5 f (0) 1 bd for any d P D.
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(1.15) For any function g: D → R, there exists a unique c P R such
that g(d ) 5 g(0) 1 cd for any d P D.

The unique b and c in the above axioms are usually denoted by ( f DR0)(0),
and ( f DR1)(0), respectively. The axioms (1.14) and (1.15) are equivalent to
the following two axioms:

(1.16) For any function f : D → R, there exists a unique b8 P R such
that f (d ) 5 f (0) 1 db8 for any d P D.

(1.17) For any function g: D → R, there exists a unique c8 P R such
that g(d ) 5 g(0) 1 dc8 for any d P D.

The unique b8 and c8 in the above axioms are usually denoted by (0
›

D f )(0)
and (0D

Rf )(0), respectively. These four axioms as a whole are called the super-
Kock–Lawvere axiom. For details of elementary differential calculus in this
direction the reader is referred to Nishimura (1998, §3).

We conclude this subsection by a definition. An R-supermodule } is
said to be graded Euclidean if it abides by the following conditions:

(1.18) For any function f : D → }, there exists a unique x P } such
that f (d ) 5 f (0) 1 xd for any d P D.

(1.19) For any function g: D → }, there exists a unique y P } such
that g(d ) 5 g(0) 1 yd for any d P D.

1.4. Supermicrocubes

A supermicrolinear space M shall be chosen arbitrarily once and for all.
Given (p1, . . . , pn) P (Z2)n, a pure n-supermicrocube of type (p1, . . . , pn)
on M is a function from Dp1 3 . . . 3 Dpn to M. We denote by T p1,...,pnM
the totality of pure n-supermicrocubes of type (p1, . . . , pn) on M. We denote
by TpM the set-theoretic union of T p1,...,pnM for all (p1, . . . , pn) P (Z2)n. In
particular, T 1M is usually denoted by TM, and their elements are called pure
supervectors tangent to M. Given g P T p1,...,pnM and e P Dpi, gi

e denotes
the mapping

(d1, . . . , dn21) P Dp1 3 . . . 3 Dpi21 3 Dpi11 3 . . . 3 Dpn

° g(d1, . . . , di21, e, di11, . . . , dn21)

which is surely a pure (n 2 1)-supermicrocube of type (p1, . . . , pi21, pi11,
. . . , pn).

An n-supermicrocube on M is a mapping from D(0, 1)n to M. We denote
by InM the totality of n-supermicrocubes on M. In particular, I1M is usually
denoted by IM, and their elements are called supervectors tangent to M.
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Given x P M, we denote the sets {t P T0M.t(0) 5 x}, {t P T1M.t(0) 5 x},
and {t P IM.t(0) 5 x} by T 0

x M, T 1
x M, and Ix M, respectively. We have

shown (Nishimura, 1998, §4) that Ix M is an R-supermodule and that its
even and odd parts can naturally be identified with T 0

x M and T 1
x M. We have

noted there also that the R-supermodule Ix M is graded Euclidean.
Given (p1, . . . , pn) P (Z2)n, the canonical injection of Dpl 3 . . . 3

Dpn into D(0, 1)n and the canonical projection of D(0, 1)n onto Dp1 3 . . .
3 Dpn are denoted by ip1,...,pn and pp1,...,pn, respectively. The totality of g P
InM with g + ip1,...,pn + pp1,...,pn 5 g can and shall hereafter be identified with
T p1,...,pnM.

1.5. Exterior Differential Calculus

Given g P T p1,...,pnM and a P Rq, pure n-supermicrocubes g ?i a and
a ?i g of type (p1, . . . , pi 1 q, . . . , pn) on M (1 # i # n) are defined by

(1.20) (g ?i a)(d1, . . . , dn) 5 g(d1, . . . , adi , . . . , dn)
(1.21) (a ?i g)(d1, . . . , dn) 5 g(d1, . . . , di a, . . . , dn)

for any (d1, . . . , dn) P Dp1 3 . . . 3 Dpi1q 3 . . . 3 Dpn.
Given g P T p1,...,pnM and s P Permn , a pure n-supermicrocube Ss(g)

of type (ps21(1), . . . , ps21(n)) on M is defined as follows:

(1.22) Ss(g)(d1, . . . , dn) 5 g(ds(1), . . . , ds(n)) for any (d1, . . . , dn) P
Dps21(1)

3 . . . 3 Dps21(n)
.

A graded differential n-form on M is a mapping u fromT nM to R abiding
by the following conditions:

(1.23) u(g ?i a) 5 u(a ?i11 g) (1 # i # n 2 1), while u(g ?n a) 5 u(g)a
for any q P Z2, any a P Rq, and any g P T nM.

(1.24) If g is a pure n-microsquare of type (p1, . . . , pn) on M, then
u(S(i,j)g) 5 (21)11hi,ju(g) (1 # i , j # n), where hi,j 5
pi( j

h5i11ph 1 pj( j21
h5i11ph.

We denote by Jn(M ) the totality of graded differential n-forms on M.
Given g P TnM and a P R, n-supermicrocubes g ?i a and a ?i g on M

(1 # i # n) are defined as in (1.18) and (1.19), respectively. Given g P
TnM and s P Bermn , an n-supermicrocube (s(g) on M is defined as in
(1.20). A differential n-form on M is a mapping u from TnM to R subject
to the following conditions:

(1.25) u(g ?i a) 5 u(a ?i11 g) (1 # i # n 2 1), while u(g ?n a) 5 u(g)a
for any a P R and any g P TnM.
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(1.26) If g is a pure n-supermicrocube of type (p1, . . . , pn) on M,
then u(S(i,j)g) 5 (21)11hi,j(g) (1 # i , j # n), where hi,j 5
pi ( j

h5i11ph 1 pj ( j21
h5i11ph.

We denote by Jn(M ) the totality of differential n-forms on M. We have
shown (Nishimura, 1999, Proposition 1.2) that there is a natural bijective
correspondence between Jn(M ) and Jn(M ). We have shown (Nishimura
(1999, Proposition 2.5) that, given u P Jn(M ), there exists a unique du P
Jn11(M ) such that for any (p1, . . . , pn11) P (Z2)n11, any g P T p1,...,pn11M,
and any (e1, . . . , en11) P Dp

1 3 . . . 3 Dp
n11, we have

(1.27) du(g)e1 . . . en11 5 (n11
i51 (21) j1ai(u(gi

0) 2 u(gi
ei)) e1 . . . êi . . .

en11

with ai 5 pi ((hÞiph).

1.6. Supervector Bundles

A mapping z: E → M of supermicrolinear spaces is called a supervector
bundle provided that Ex 5 z21(x) is a Euclidean R-supermodule for any x P
M. We call M the base space of z and Ex the fiber over x. The totality of
mappings l: M → E with z + l 5 idM (idM denotes the identity transformation
of M ) is denoted by Sec z. The totality of t P TE with z + t 5 0 [the zero
supervector tangent to M at z + t(0)] is to be considered as a supervector
bundle over E and is to be denoted V(E ).

The tangent bundle tM: MD(0,1) → M is a supervector bundle, where tM

assigns, to each t P MD(0,1), t(0) P M. If 1 is a Euclidean R-supermodule
which is supermicrolinear, then the trivial bundle M 3 1 → M is a supervec-
tor bundle.

Various algebraic constructions in linear superalgebra can be carried
over to supervector bundles. If z: E → M and h: F → M are supervector
bundles over the same base space M, then their Whitney sum z % h and the
natural protection p+(z, h): +(z,h) → M are supervector bundles, where +(z, h)
denotes the set-theoretic union of Hom (zx , hx) for all x P M.

If w: M → N is a map of supermicrolinear spaces and h: F → N is a
supervector bundle, then the notion of a graded differential n-form on M and
that of a differential n-form on M discussed in the preceding section can be
generalized easily to that of a graded differential n-form on M with values
in h relative to w and that of a differential n-form on M with values in h
relative to w . We denote by Jn(M →w N; j) and Jn(M →w N; j) the totality
of graded differential n-forms on M with values in h relative to w and that
of differential n-forms on M with values in h relative to w, respectively. They
are to be identified naturally as Jn(M ) and Jn(M ). If N 5 M and w is the
identity map idM of M, then Jn(M →w N; h) and Jn(M →w N; h) are denoted
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also by Jn(M; h) and Jn(M; h), respectively. If h is furthermore a trivial
bundle M 3 R → M, then Jn(M; h) and Jn(M; h) degenerate into Jn(M )
and Jn(M ), respectively.

2. SUPERCONNECTIONS

Let z: E → M be a supervector bundle. A superconnection on z is a
mapping ,: MD(0,1) 3M E → ED(0,1) such that for any (t, v) P MD(0,1) 3M E,
any a P R, and any d P D(0,1) we have that

(2.1) ,(t, v)(0) 5 v
(2.2) ,(ta, v)(d) 5 ,(t, v)(ad)
(2.3) ,(t, va)(d) 5 (,(t, v)(d))a
(2.4) The mapping u P Et(0) ° ,(t, u)(d) P Et(d), denoted by p,

(t,d)

or p(t,d), is bijective and preserves parities. Its inverse is denoted
by q,

(t,d) 5 q(t,d): Et(d) → Et(0). We call p(t,d) the parallel transport
from t(0) to t(d) along t, while q(t,d) is called the parallel transport
from t(d) to t(0) along t.

If the supervector bundle z: E → M is a trivial bundle M 3 1 → M,
and if ,(t, t(0), x))(d) 5 (t(d), x) for any t P MD(0,1), any x P 1, and any
d P D(0, 1), then the superconnection , is called trivial.

Given t P ED(0,1), we define v(t) P ED(0,1) to be

(2.5) v(t) 5 t 2 ,(z + t, t(0))

Since v(t) P V(E ), there exist unique ve(t), vo(t) P Ez+t(0) such that

(2.6) v(t)(d) 5 t(0) 1 ve(t)de 1 vo(t)do

for any d P D(0, 1). We define v(t) to be ve(t) 1 vo(t).

Proposition 2.1. Given v P E and x P M with x 5 z(v), the mapping
t P (ED(0,1))v ° v(t) P E is homogeneous, so that v is a differential 1-form
on E with values in z relative to z.

Proof. By (2.2), v is homogeneous, so that for any a P R and any d P
D(0, 1),

(2.7a) v(ta)(d)
5 v(t)(ad)
5 v(t)((aede 1 aodo) 1 (aedo 1 aode))
5 t(0) 1 ve(t)(aede 1 aodo) 1 vo(t)(aedo 1 aode)
5 t(0) 1 (ve(t)ae 1 vo(t)ao)de

1 (ve(t)ao 1 vo(t)ae)do
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Therefore

(2.7b) v(ta) 5 (ve(t)ae 1 vo(t)ao) 1 (ve(t)ao 1 vo(t)ae)

5 v(t)a

as was claimed. n

We say that v is the superconnection form of ,.

Proposition 2.2. For any d P D(0, 1) and any t P ED(0,1) we have

(2.8) q(z+t,d)(t(d)) 5 t(0) 1 ve(t)de 1 vo(t)do

Proof. Consider the mapping

(d, d8) P D(0, 1, 0, 1) ° p(z+t,d)(t(0) 1 ve(t)d8e 1 vo(t)(d8o) P E

which coincides with ,(z + t, t(0)) on the first axis and which coincides with
v(t) on the second axis. Therefore the mapping

d P D(0, 1) ° p(z+t,d)(t(0) 1 ve(t)de 1 vo(t)do) P E

coincides with t, which implies the desired proposition. n

Now suppose that we are given a mapping w : M → N of microlinear
spaces and a supervector bundle h : F → N endowed with a superconnection
,, which shall be fixed throughout the rest of this section. Given a differential
n-form u on M with values in h relative to w, we would like to define its
covariant exterior derivative D,u, which is to be a differential (n 1 1)-form
on M with values in h relative to w. It is not difficult to see that for any
(p1, . . . , pn11) P (Z2)n11 and g P T p1,...,pn11M, there exists a unique D,u(g)
P Fh(g(0,...,0)) such that for any (e1, . . . , en11) P Dp1 3 . . . 3 Dpn11 we have

(2.9) D,u(g)e1 . . . en11 5 on11
i51 (21)i1ai(u(gi

0

2 q,
(w+gi,ei)(u(gi

ei)))ei . . . êi . . . en11

where gi is the tangent supervector to M assigning g(0, . . . , 0, d, 0, . . . , 0)
(d is positioned at the ith slot) to each d P Dpi and ai 5 pi ((nÞipn). The
crucial step in the proof that the mapping g P Tn11M ° D,u(g) is indeed
a graded differential (n 1 1)-form on M with values in h relative to w follows
from the following two lemmas, as in Nishimura (1999, §2).

Lemma 2.3. We have

(2.10) D,u(g ?n11 a) 5 D,u(g)a

for any (p1, . . . , pn11) P (Z2)n11, any g P T p1,...,pn11M, and any a P Ro.
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Proof. Let (p1, . . . , pn , pn11) 5 (p1, . . . , pn , pn11 1 l). By Proposition
2.2 we have

(2.11) D,u(g ?n11 a 5 (n11
i51 (21)i111jiF i DRpi)(0)

(2.12) D¹u(g) 5 (n11
i51 (21)i111ji(F i DRpi)(0)

where ji 5 pi(h.iph and F i(e) 5 q,
(z+gi,e)(u(gi(e))) for any e P Dpi with gi(e)

(d1, . . . , dn) 5 g(d1, . . . , di21, e, di , . . . , dna) for any (d1, . . . , dn) P Dp1

3 . . . 3 Dpi21 3 Dpi11 3 . . . 3 Dpn11 (1 # i # n) and gn11(e) (d1, . . . , dn)
5 g(d1, . . . , dn , ae) for any (d1, . . . , dn) P Dpi 3 . . . 3 Dpn while ji 5
pi(h.iph and F i(e) 5 q,

(z+gi,e)(u(gi(e))) for any e P Dpi with gi(e)(d1 , . . . , dn)
5 g(d1, . . . , di21, e, di , . . . , dn) for any (d1, . . . , dn) P Dp1 3 . . . 3
Dpi21 3 Dpi11 3 . . . 3 Dpn11 (1 # i # n 1 1). For any natural number i
with 1 # i # n and any e P Dpi we have

(2.13) F i DRpi(0)e 5 F i(e) 2 F i(0)

5 (F i(e) 2 F i(0))a

5 F i D
←

pi(0)ea

5 (21)piF iDRpi(0)ae

so that

(2.14) F iDRpi(0) 5 (21)piF iDRpi(0)a

On the other hand, for any e P Dpn11, we have

(2.15) F n11DRpn11(0) 5 F n11DRpn11(0)a

Since ji 5 ji 1 pi (1 # i # n) and jn11 5 jn11 5 0, the desired equality
(2.10) follows from (2.11), (2.12), (2.14), and (2.15). n

Lemma 2.4. We have

(2.16) D,u(g ?i a) 5 D,u(a ?i11 g) (1 # i # n)

for any (p1, . . . , pn11) P (Z2)n11, any g P T p1,...,pn11M, and any a P Ro.

Proof. Let (p1, . . . , pi . . . , pn11) 5 (p1, . . . , pi 1 l, . . . , pn11), and
(p1, . . . , pi11, . . . , pn11) 5 (p1, . . . , pi11 1 l, . . . , pn11). Let jj and F j



308 Nishimura

(1 # j # n 1 1) be the same as in the previous lemma. By Proposition 2.2
we have

(2.17) D,u(g ?i a) 5 (n11
j51 (21) j111jj(F j DRp j)(0)

(2.18) D,u(a ?i11 g) 5 (n11
j51 (21) j111jj(F jDRpj)(0)

where j j 5 pj(h.jph and F j(e) 5 q,
(j+gj,e)(u(g j(e))) for any e P Dpj with

g j(e)(d1, . . . , dn) 5 (gi̇a)(d1, . . . , dj21, e, dj , . . . , dn) for any (d1, . . . , dn)
P Dp1 3 . . . 3 Dpj21 3 Dpj11 3 . . . 3 Dpn11 (1 # j # n 1 1), while j j 5
pj(h.j ph and F j(e) 5 q,

(z+gj,e)(u(g j(e))) for any e P Dpj with g j(e) (d1, . . . ,
dn) 5 (a ?i11 g) (d1, . . . , dj21, d, dj , . . . , dn) for any (d1, . . . , dn) P Dp1 3

. . . 3 Dpj21 3 Dpj11 3 . . . 3 Dpn11 (1 # j # n 1 1). For any j with j Þ i
and j Þ i 1 1,

(2.19) F j DRpj (0)e 5 F j (e) 2 F j(0)

5 F j (e) 2 F j (0)

5 F j DRpj (0)e

so that

(2.20) F j DRpj (0) 5 F j DRpj (0)

For j 5 i we have that for any e P Dpi.

(2.21) Fj DRpi(0)e 5 F j DRpi(0)ae

5 (21)piF j DRpi(0)ea

5 (21)pi{F i(e) 2 Fi(0)}a

5 (21)(h$iph{F i(e) 2 F i(0)}

5 (21)(h$iphF i DRpi(0)e

so that

(2.22) F j DRpi(0) 5 (21)(h$iphF i DRpi(0)

For j 5 i 1 1 we have that for any e P Dpi11,
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(2.23) F i+1DRpi11(0)e 5 (21)pi11F i11DRpi11(0)ae

5 F i11DRpi11(0)ea

5 {F i11(e) 2 F i11(0)}a

5 (21)(h.i11ph{F i11(e) 2 F i11(0)}

5 (21)(h.i11phF iDRpi(0)e

so that

(2.24) F i11DRpi11(0) 5 (21)(h.i11phF iDRpi(0)

For j with j , i we have

(2.25) j j 5 j j 5 pj 1 j j

while for j with j . i 1 1 we have

(2.26) j j 5 j j 5 j j

On the other hand, we have

(2.27) ji 5 ji 1 oh.i ph

5 ji 1 oh$i Ph

(2.88) ji11 5 ji11 1 oh.i11 ph

5 ji11 1 oh.i11 ph

Therefore our desired (2.16) follows from (2.17), (2.18), (2.20), (2.22), (2.24),
and (2.25)–(2.28). n

3. INDUCED SUPERCONNECTIONS

Now we define some induced superconnections. Let z: E → M and h:
F → M be supervector bundles over the same base space M with superconnec-
tions , and ,8 bestowed upon them. First we define an induced superconnec-
tion , % ,8 on the Whitney sum z % h as follows:

(3.1) (, % ,8)(t, vz % vh)(d)
5 ,(t, vz)(d) % ,8(t, vh)(d)
for any t P M D(0,1), any vz P Et(0), any vh P Ft(0),
and any d P D(0, 1).
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Proposition 3.1. For any tz P ED(0,1) and any th P FD(0,1) with zD(0,1)

(tz) 5 hD(0,1)(th), we have

(3.2) vz%h(th % tz) 5 vz(tz) % vh(th)

where vz%h, vz and vh denote the superconnection forms of , % ,8, ,,
and ,8, respectively.

Proof. Let t 5 zD(0,1)(tz 5 hD(0,1)(th). For any d P D(0, 1), we have, by
Proposition 2.2, that

(3.3) q,%,8
(t,d) (tz(d) % th(d))

5 (tz(0) 1 vz,e(tz)de 1 vz,o(tz)do)

% (th(0) 1 vh,e(tz)de 1 vh,o(tz)do)

5 (tz(0) % (th(0)) 1 (vz,e(tz) % vh,e(th))de

1 (vz,o(tz) % vh,o(th))do

Therefore the desired proposition obtains by Proposition 2.2 again. n

Corollary 3.2. For any m P Sec z and any n P Sec h, we have

(3.4) D,%,8(m % n) 5 D,m % D,8n

We now define an induced superconnection ,̂ on p+(z,h) as follows:

(3.5) ,̂(t, v̂ )(d)(v) 5 p,8
(t,d)(v̂(q,

(t,d)(v)))
for any t P MD(0,1), any d P D(0, 1), any v̂ P +(z, h)t(0),
and any v P Ft(0)

Proposition 3.3. For any t̂ P +(z, h)D(0,1), and any t P ED(0,1) with
(p+(z,h))D(0,1)(t̂) 5 zD(0,1)(t), we have

(3.6) vh(t̂(t)) 5 v̂e(t̂)(t(0)) 1 v̂o(t̂)(t(0)e)

2 v̂o(t̂)(t(0)o) 1 t̂(0)(vz(t))

where v̂ denotes the superconnection form of ,̂ and t̂(t) denotes the mapping
d P D(0, 1 ° t̂(d)(t(d)).

Proof. Let t 5 (p+(z,h))D(0,1)(t̂) 5 zD(0,1)(t). For any d P D(0, 1), we
have, by Proposition 2.2, that

(3.7) q,8
(t,d)(t̂(d)(t(d)))

5 q,̂
(t,d)(t̂(d))(q,

(t,d)(t(d)))

5 (t̂)(0) 1 v̂e(t̂)de 1 v̂o(t̂)do)(t(0) 1 vz,e(t)de
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1 vz,o(t)do)

5 (t̂(0) 1 dev̂e(t̂) 1 do(v̂o(t̂))e 2 do(v̂o(t̂))o)(t(0)

1 vz,e(t)de 1 vz,o(t)do)

5 (t̂(0)(t(0)) 1 dev̂e(t̂)(t(0)) 1 do(v̂o(t̂))e(t(0))

2 do(v̂o(t̂))o(t(0)) 1 t̂(0)(vz,e(t))de

1 t̂(0)(vz,o(t))do

5 t̂(0)(t(0)) 1 v̂e(t̂)(t(0))de 1 (v̂o(t̂))e(t(0)e)do

2 v̂o(t̂))e(t(0)o)do 1 (v̂o(t̂))o(t(0)e)do

2 (v̂o(t̂))o(t(0)o)do 1 t̂(0)(vz,e(t))de

1 t̂(0)(vz,o(t))do

5 t̂(0)(t(0)) 1 {v̂e(t̂)(t(0)) 1 t̂(0)(vz,e(t))}de

1 {v̂o(t̂))e(t(0)e) 2 v̂o(t̂))e(t(0)o)

1 v̂o(t̂))o(t(0)e) 2 v̂o(t̂))o(t(0)o)

1 t̂(0)(vz,o(t))}do

5 t̂(0)(t(0)) 1 {v̂e(t̂)(t(0)) 1 t̂(0)(vz,e(t))}de

1 {v̂o(t̂)(t(0)e) 2 v̂o(t̂)(t(0)o) 1 t̂(0)(vz,o(t))}do

Therefore the desired proposition obtains by Proposition 2.2 again. n

Corollary 3.4. For any m P Sec z and any i P Sec p+(z,h), we have

(3.8) D,8(i(m)) 5 (D e
,̂i)(m) 1 (D o

,̂i)(me) 2 (D o
,̂i)(mo)

1 i(D,m)

If h is the trivial bundle M 3 R → M and the superconnection ,8 is
trivial, then the superconnection ,̂ is usually denoted by ,*. If z 5 h and
, 5 ,8, then the superconnection ,̂ is usually denoted by ,̃.

4. CURVATURE

Let z: E → M be a supervector bundle endowed with a superconnection
,, which shall be fixed throughout this section. The principal objective of
this section is to introduce a sort of curvature abiding by the so-called second
Bianchi identity. First let us introduce a preliminary version of curvature



312 Nishimura

somewhat disobedient to the second Bianchi identity, from which our desired
curvature naturally follows. The connection form v is surely an element of
J1(E →z

M; z), and its covariant exterior derivative D,v P J2(E →z
M; z)

is called the curvature form of the first kind and denoted by V , for which
we have the following result.

Proposition 4.1. For any g P ED(p)3D(q) and any (d1, d2) P D(p) 3 D(q)
with g 5 z + g, t1 5 g(?, 0), t2 5 g(d1, ?), t3 5 g (0, ?), and t4 5 g (?, d2),
we have

(4.1) (21)pqV(g)d1d2

5 q(t1,d1) ? q(t2,d2)(g(d1, d2))

2 q(t3,d2) ? q(t4,d1)(g(d1, d2))

Proof. By the very definition of covariant exterior differentiation, we
have

(4.2) (21)pqV(g)d1d2

5 v(g(?, 0))d1 1 q(t1,d1)(v(g(d1, ?)))d2

2 q(t3,d2)(v(g(?, d2)))d1 2 v(g(0, ?))d2

By Proposition 2.2 we have

(4.3) v(g(?, 0))d1

5 q(t1,d1)(g(d1, 0)) 2 g(0, 0)

(4.4) q(t1,d1)(v(g(d1, ?)))d2

5 q(t1,d1){q(t2,d2)(g(d1, d2)) 2 g(d1, 0)}

5 q(t1,d1) + q(t2,d2)(g(d1, d2)) 2 q(t1,d1)(g(d1, 0))

(4.5) q(t3,d2)(v(g(?, d2)))d1

5 q(t3,d2){q(t4,d1)(g(d1, d2)) 2 g(0, d2)}

5 q(t3,d2) + q(t4,d1)(g(d1, d2)) 2 q(t3,d2)(g(0, d2))

(4.6) v(g(0, ?))d2

5 q(t3,d2)(g(0, d2)) 2 g(0, 0)

Therefore the desired conclusion follows. n
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Now we introduce another curvature form, to be called the curvature
form of the second kind and to be denoted by Ṽ, as follows:

(4.7) Ṽ(g) 5 V(h(g)) for any microsquare g on E.

where h(g) denotes the horizontal, component of g (Moerdijk and Reyes,
1991, Chapter V, §6) in the sense that for any (d1, d2) P D(0, 1)2,

(4.8) h(g)(d1, d2) 5 p(g(d1,?),d2) + p(g(?,0),d1)(g(0, 0))

with g 5 z + g. For the curvature form of the second kind, we have the
following result.

Proposition 4.2. Using the same notation as in Proposition 4.1, we have

(4.9) (21)pqṼ(g)d1d2

5 g(0, 0)

2 q(t3,d2) + q(t4,d1) + p(t2,d2) + p(t1,d1)(g(0, 0))

so that Ṽ(g) depends only on g 5 z?g and v 5 g(0, 0), which enables us to
regard Ṽ as a function from T2(M ) to +(z) in the sense that Ṽ(g)(v) 5 Ṽ(g).

Proof. Simply put h(g) in place of g in Proposition 4.1. n

We now reckon Ṽ as a function from M D(0,1)2 to +(z) in the canonical
way, for which we have the following result.

Proposition 4.3. The function Ṽ: M D(0,1)2 → +(z) is a differential 2-
form on M with values in p+(j), i.e., Ṽ P J2(M; p+(z)).

Proof. We define a function h: M D(0,1)2 3
M

E → E D(0,1)2 as follows:

(4.10) h(g, v)(d1, d2) 5 p(g(d1,?),d2) + p(g(?,0),d1)(v)

for any (g, v) P M D(0,1)2 3
M

E and any (d1, d2) P D(0, 1)2

Then it is easy to see that

(4.11) h(g ?i a, v) 5 h(g, v) ?i a for any a P R (i 5 1, 2)

Since Ṽ(g)(v) 5 V(h(g, v)) and V is 2-homogeneous, Ṽ is also 2-homoge-
neous. Now we use the same notation as in Propositions 4.1 and 4.2. To
show that Ṽ is super alternating, we let v0 5 v and define v1 and v2 in order
as follows:
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(4.12) v1 5 q(t3,d2) ? q(t4,d1) ? p(t2,d2) ? p(t1,d1)(v0)

(4.13) v2 5 q(t1,d1) ? q(t2,d2) ? p(t4,d1) ? p(t3,d2)(v1)

On the one hand, it follows directly from (4.12) and (4.13) that

(4.14) v2 5 v0

On the other hand, we can calculate v1 and v2 in order by making use of
Proposition 4.2:

(4.15) v1 5 v0 2 (21)pqṼ(g)(v0)d1d2

(4.16) v2 5 v1 2 (21)pqṼ(((g))(v1)d2d1

5 v0 2 (21)pqṼ(g)(v0)d1d2

2 (21)pqṼ(((g))(v0 2 (21)pqṼ(g)(v0)d1d2)d2d1

[(4.15)]

5 v0 2 (21)pqṼ(g)(v0)d1d2

2 (21)pqṼ(((g))(v0)d2d1

It follows from (4.14) and (4.16) that

(4.17) Ṽ(g)(v0) 1 (21)pqṼ(((g))(v0) 5 0

which means that Ṽ is super alternating. n

Now we give a super, cubical version of Kock’s (1996, Theorem 2)
simplicial and combinatorial Bianchi identity.

Theorem 4.4. Let g P MD(p)3D(q)3D(r). Let (d1, d2, d3) P D(p) 3 D(q)
3 D(r). We denote points g(0, 0, 0), g(d1, 0, 0), g(0, d2, 0), g(0, 0, d3), g(d1,
d2, 0), g(d1, 0, d3), g(0, d2, d3), and g(d1, d2, d3) by O, A, B, C, D, E, F, and
G respectively. These eight points are depicted figuratively as the eight
vertices of a cube:
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Then we have

(4.18) PAO + PDA + PGD + RGFBD + RGECF + RGDAE + PDG

+ PAD + POA + ROCEA + ROBFC + ROADB 5 idO

where

(4.19) For any adjacent vertices X and Y of the cube, PXY denotes the
parallel transport from X to Y along the line connecting X and
Y (e.g., POA and PAO denote p(g(?,0),d1) and q(g(?,0),d1) respectively).

(4.20) For any four vertices X, Y, Z, and W of the cube rounding one
of the six facial squares of the cube, RXYZW denotes PWX + PZW

+ PYZ + PXY (e.g., ROADB denotes q(g(0,?,0),d2) + q(g(?,d2,0),d1) +
p(g(d1,?,0),d2) + p(g(?,0,0),d1)).

(4.21) idO is the identity transformation of EO.

Proof. Write (4.18) exclusively in terms of PXY’s, and write off all
consecutive PXY + PYX’s. n

The above theorem gives rise to the following form of the second Bianchi
identity in our super context.

Theorem 4.5. We have

(4.22) D,̃ Ṽ 5 0

where D,̃ is the covariant exterior differentiation with respect to the
induced superconnection ,̃ on p+(j), and recall that Ṽ P J2, (M; p+(j)), as
was explained in Proposition 4.3.

Proof. The proof is carried out by the same method as in Proposition
4.3. Let g, d1, d2, d3, O, A, B, C, D, E, F, and G be as in Theorem 4.4. Given
v0 P Eg(0,0,0), we define vi P Eg(0,0,0) (i 5 1, 2, 3, 4, 5, 6) in order as follows:

(4.23) v1 5 ROADB(v0)

(4.24) v2 5 ROBFC(v1)

(4.25) v3 5 ROCEA(v2)

(4.26) v4 5 PAO + PDA + PGD + RGDAE + PDG + PAD + POA(v3)

5 PAO + RAEGD + POA(v3)

(4.27) v5 5 PAO + PDA + PGD + RGECF + PDG + PAD + POA(v4)

5 PAO + RAEGD + PEA + RECFG + PAE + RADGE + POA(v4)

5 PAO + PEA + REGDA + RECFG + READC + PAE + POA(v4)
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5 ROCEA + PCO + PEC + REGDA + RECFG + READG + PCE + POC

+ ROAEC(v4)

5 ROCEA + PCO + PEC + REGDA + PCE + RCFGE + PEC + READG + PCE

+ POC + ROAEC(v4)

(4.28) v6 5 PAO + PDA + PGD + RGFBD + PDG + PAD + POA(v5)

5 PAO + PDA + RDGFB + PAD + POA + (v5)

5 ROBDA + PBO + RBDGF + POB + ROADB + (v5)

Now we calculate vi (i 5 1, . . . , 6) in order. It follows directly from Proposi-
tion 4.2 that

(4.29) v1 5 v0 2 (21)pqṼ(g(?, ?, 0))(v0) d1d2

The calculations of v2 and v3 are similar, so we present details of the former
calculation, but simply note the result of the latter calculation, leaving the
details to the reader:

(4.30) v2 5 v1 2 (21)qrṼ(g(0, ?, ?))(v1)d2d3

[Proposition 4.2]

5 v0 2 (21)pqṼ(g(?, ?, 0))(v0)d1d2

2 (21)qrṼ(g(0, ?, ?))(v0 2 (21)pqṼ(g(?, ?, 0))

3 (v0)d1d2)d2d3 [(4.29)]

5 v0 2 (21)pqṼ(g(?, ?, 0))(v0)d1d2

2 (21)qrṼ(g(0, ?, ?))(v0)d2d3

(4.31) v3 5 v0 2 (21)pqṼ(g(?, ?, 0))(v0)d1d2

2 (21)qrṼ(g(0, ?, ?))(v0)d2d3

1 (21)prṼ(g(?, 0, ?))(v0)d1d3

The three calculations of v4, v5 and v6 are similar, so we present their details
only in case of the first, leaving details of the other two calculation to
the reader:

(4.32) v4 5 PAO + RAEGD + POA(v0 2 (21)pqṼ(g(?, ?, 0))(v0)d1d2

2 (21)qrṼ(g(0, ?, ?))(v0)d2d3

1 (21)prṼ(g(?, 0, ?))(v0)d1d3 [(4.31)]
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5 PAO + RAEGD + (POA(v0)

2 (21)pqPOA(Ṽ(g(0, ?, ?, 0))(v0))d1d2

2 (21)qrPOA(Ṽ(g(0, ?, ?))(v0))d2d3

1 (21)prPOA(Ṽ(g(?, 0, ?))(v0))d1d3

5 PAO(POA(v0) 2 (21)pqPOA(Ṽ(g(?, ?, 0))(v0))d1d2

2 (21)qrPOA(Ṽ(g(0, ?, ?))(v0))d2d3

1 (21)prPOA(Ṽ(g(?, 0, ?))(v0))d1d3

1 (21)qrṼ(g(d1, ?, ?))(POA(v0)

2 (21)pqPOA(Ṽ(g(?, ?, 0))(v0))d1d2

2 (21)qrPOA(Ṽ(g(0, ?, ?))(v0))d2d3

1 (21)prPOA(Ṽ(g(?, 0, ?))(v0))d1d3)d2d3

[Propositions 4.2 and 4.3]

5 v0 2 (21)pqṼ(g(?, ?, 0))(v0))d1d2

2 (21)qrṼ(g(0, ?, ?))(v0)d2d3

1 (21)prṼ(g(?, 0, ?))(v0)d1d3

1 (21)qrPAO(Ṽ(g(d1, ?, ?))(POA(v0)))d2d3

(4.33) v5 5 v0 2 (21)pqṼ(g(?, ?, 0))(v0)d1d2

2 (21)qrṼ(g(0, ?, ?,))(v0)d2d3

1 (21)prṼ(g(?, 0, ?))(v0)d1d3

1 (21)qrPAO(Ṽ(g(d1, ?, ?))(POA(v0)))d2d3

1 (21)pqPCO(Ṽ(g(?, ?, d3))(POC(v0))d1d2

(4.34) v6 5 v0 2 (21)pqṼ(g(?, ?, 0))(v0)d1d2

2 (21)qrṼ(g(0, ?, ?))(v0)d2d3

1 (21)prṼ(g(?, 0, ?))(v0)d1d3

1 (21)qrPAO(Ṽ(g(d1, ?, ?))(POA(v0)))d2d3

1 (21)pqPCO(Ṽ(g(?, ?, d3))(POC(v0)))d1d2

2 (21)prPBO(Ṽ(g(?, d2, ?))(POB(v0)))d1d3
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It should be the case by Theorem 4.4 that v6 5 v0. Therefore

(4.35) (21)pqṼ(g(?, ?, 0))(v0)d1d2

1 (21)qrṼ(g(0, ?, ?))(v0)d2d3

2 (21)prṼ(g(?, 0, ?))(v0)d1d3

2 (21)qrPAO(Ṽ(g(d1, ?, ?))(POA(v0)))d2d3

2 (21)pqPOC(Ṽ(g(?, ?, d3))(POC(v0)))d1d2

1 (21)prPBO(Ṽ(g(?, d2, ?))(POB(v0))))d1d3 5 0

By multiplying by (21)pq1pr1qr in (4.35), we have

(4.36) (21)pr1qrṼ(g(?, ?, 0))(v0)d1d2

1 (21)pq1prṼ(g(0, ?, ?))(v0)d2d3

2 (21)pq1qrṼ(g(?, 0, ?))(v0)d1d3

2 (21)pq1prPAO(Ṽ(g(d1, ?, ?))(POA(v0)))d2d3

2 (21)pr1qrPOC(Ṽ(g(?, ?, d3))(POC(v0)))d1d2

1 (21)pq1qrPBO(Ṽ(g(?, d2, ?))(POB(v0))))d1d3 5 0

Since v0 P Eg(0,0,0) was chosen arbitrarily, the proof is complete. n

We conclude this section by discussing curvatures of the second kind
of the induced superconnections dealt with in Section 3. Let h: F → M be
another supervector bundle over the same base space embellished with a
superconnection ,8, as in that section.

Proposition 4.6. For any g P M(0,1)2 we have

(4.37) Ṽz % h(g) 5 Ṽz(g) % Ṽh(g)

where Ṽz % h, Ṽz, and Ṽh denote the curvature forms of the second kind of
superconnections , % ,8, ,, and ,8, respectively.

Proof. Let v % v8 P (E % Fg(0,0)). We assume that g P MD(p)3D(q). Let
d1 P D(p) and d2 P D(q). Let t1 5 g(?, 0), t2 5 g(d1, ?), t3 5 g(0, ?), and
t4 5 g(?, d2). By Proposition 2.2, we have

(4.38) (21)pqṼz%h(g)(v % v8)d1d2

5 (v % v8)
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2 q,%,8
(t3,d2) + q,%,8

(t4,d1) + p,%,8
(t2,d2) + p,%,8

(t1,d1)(v % v8)

5 {v 2 q,
(t3,d2) + q,

(t4,d1) + p,
(t2,d2) + p,

(t1,d1)(v)}

% {v8 2 q,8
(t3,d2) + q,8

(t4,d1) + p,8
(t2,d2) + p,8

(t1,d1)(v8)}

5 (21)pqṼz(g)(v)d1d2 % (21)pqṼh(g8)(v8)d1d2

5 (21)pq{Ṽz(g)(v) % Ṽh(g8)v8)}d1d2

Therefore the desired proposition obtains. n

Proposition 4.7. Let g P MD(p)3D(p) and v̂ P +(z, h)g(0,0). Then we have

(4.39) V̂̃(g)(v̂)

5 (Ṽh(g)) + v̂e 1 (21)p1q(Ṽh(g)) + v̂o 2 v̂ + (Ṽz(g))

where V̂̃, Ṽz and Ṽh denote the curvature forms of the second kind of
superconnections ,̂, , and ,8 respectively.

Proof. Let d1 P D(p) and d2 P D(q). By Proposition 4.2 we have

(4.40) (21)pqV̂̃(g)(v̂ )d1d2

5 v̂ 2 q,̂
(t3,d2) + q,̂

(t4,d1) + p,̂
(t2,d2) + p,̂

(t1,d1)(v̂)

5 v̂ 2 q,
(t3,d2 + q,

(t4,d1) + p,
(t2,d2) + p,

(t1,d1) + v̂

+ q,
(t1,d1) + q,

(t2,d2) + p,
(t4,d1) + p,

(t3,d2)

5 v̂ 2 (idFg(0,0) 2 (21)pqṼh(g)d1d2) + v̂ + (idEg(0.0)

1 (21)pqṼz(g)d1d2)

5 v̂ 2 (idFg(0,0) 2 (21)pqd1d2(Ṽh(g))e

2 (21)pq1p1qd1d2(Vh(g))o) + v̂ + (idEg(0,0)

1 (21)pqṼz(g)d1d2)

5 (21)pq(Ṽh(g))e + v̂ed1d2

1 (21)pq1p1q(Ṽh(g))e + v̂od1d2

1 (21)pq(Ṽh(g))o + v̂ed1d2

1 (21)pq1p1q(Ṽh(g))o + v̂od1d2 2 (21)pqv̂ + (Vz(g))d1d2

5 (21)pq(Ṽh(g)) + v̂ed1d2 1 (21)pq1p1q(Ṽh(g)) + v̂od1d2
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2 (21)pqv̂ + (Ṽz(g))d1d2

5 (21)pq{(Ṽh(g)) + v̂e 1 (21)p1q(Ṽh(g)) + v̂o

2 v̂ + (Ṽz(g))}d1d2

Therefore the desired proposition obtains. n
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Bartocci, C., Bruzzo, U., and Hernández-Ruipérez, D. (1991). The Geometry of Supermanifolds,
Kluwer, Dordrecht. DeWitt, B. (1984). Supermanifolds, Cambridge University Press,
Cambridge.

Kock, A. (1981). Synthetic Differential Geometry, Cambridge University Press, Cambridge.
Kock, A. (1996). Combinatorics of curvature and the Bianchi identity, Theory and Applications

of Categories, 2, 69–89.
Lavendhomme, R. (1996). Basic Concepts of Synthetic Differential Geometry, Kluwer,

Dordrecht.
Manin, Y. I. (1988). Gauge Field Theory and Complex Geometry, Springer, Berlin and

Heidelberg.
Moerdijk, I., and Reyes, G. E. (1991). Models for Smooth Infinitesimal Analysis, Springer-

Verlag, New York.
Nishimura, H. (1998). Synthetic differential supergeometry, International Journal of Theoretical

Physics, 37, 2803–2822.
Nishimura, H. (1999). Differential forms in synthetic differential supergeometry, International

Journal of Theoretical Physics, 38, 653–663.
Nishimura, H. (2000). Another curvature in synthetic differential geometry, Bulletin Belgian

Mathematical Society, to appear.


